Koichi Eguchi1*, Atthapon Srifa1, Takeou Okanishi1, Hiroki Muroyama1, Toshiaki Matsui1, Masashi Kishimoto1, Motohiro Saito1, Hiroshi Iwai1, Hideo Yoshida1, Masaki Saito2, Takeshi Koide2, Hiroyuki Iwai2, Shinsuke Suzuki2, Yosuke Takahashi2, Toshitaka Horiuchi3, Hayahide Yamasaki3, Shohei Matsumoto4, Shuji Yumoto4, Hidehito Kubo4, Jun Kawahara5, Akihiro Okabe5, Yuki Kikkawa6, Takenori Isomura6
1 Kyoto University; 2 Noritake; 3 Nippon Shokubai; 4 Toyota Industries; 5 Mitsui Chemical; 6 Tokuyama, Japan
NH3 Fuel Conference, Los Angeles, September 19, 2016
ABSTRACT
Ammonia is a promising hydrogen carrier because of its high hydrogen density, low production cost, and ease in liquefaction and transport. Ammonia decomposes into nitrogen and hydrogen through a mildly endothermic process. The ammonia decomposition temperature is close to the operating conditions of solid oxide fuel cells (SOFCs). Therefore, the integration of these two devices is beneficial in terms of efficient heat and energy managements and will lead to the development of simplified generation systems. Continue reading →