Tag Archives: Electrolysis

Analysis of influence of operating pressure on dynamic behavior of ammonia production over ruthenium catalyst under high pressure condition

Hideyuki Matsumoto*, Javaid Rahat, Yuichi Manaka, Mika Ishii, Tetsuya Nanba, Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Process technologies on energy conversion of renewable electricity into hydrogen energy carrier are significant to deploy long-term storage and long-distance transport of much more renewable inside and outside Japan. Ammonia is a potential hydrogen carrier that contains 17.6 wt% of hydrogen. Moreover, as an energy carrier, ammonia is thought to be a clean fuel as only water and nitrogen are produced on direct combustion.

Many researchers and engineers consider that ammonia plants using hydrogen produced by solar electricity or wind electricity will be much smaller than those currently used [1]. There is an issue of low pressure condition for feed of raw material gas, since hydrogen and nitrogen are produced by water electrolysis and pressure swing adsorption (or cryogenic air separation) respectively. Ammonia synthesis under the conventional pressure conditions needs increase in power for compression of the feed gas. Moreover, low temperature operation has advantage in getting higher ammonia concentration of equilibrium limitation. In order to promote the reaction under the lower pressure conditions, lower reaction temperature condition is desirable due to a limitation of equilibrium.

In Japan, the Japan Science and Technology Agency (JST) supports the research and development of catalyst with high catalytic activities in the low-temperature region, and our research group investigates performance of developed ruthenium catalysts by small-scale ammonia plant that is built in Fukushima Renewable Energy Institute, AIST (FREA). Continue reading

Advances in Making High Purity Nitrogen for Small Scale Ammonia Generation

David Toyne*, Solutions for Automation, USA; Jay Schmuecker, Pinehurst Farm, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

The presentation will address recent developments in the Solar Hydrogen Demonstration Project in which hydrogen, nitrogen and ammonia are made from solar power, water, and air; and used to fuel a modified John Deere farm tractor.

In industrial applications very pure nitrogen is made by cryogenic distillation of air. Using Pressure Swing Absorption systems alone it is extremely difficult to achieve the required purity. An improved method was developed for making high purity nitrogen, for smaller systems.
Will discuss how, when Oxygen contaminates the reactor catalyst, Hydrogen is used to purge the catalyst, and subsequently used as fuel. Continue reading

Design Optimization of an Ammonia-Based Distributed Sustainable Agricultural Energy System

Matthew J. Palys*, Anatoliy Kuznetsov, Joel Tallaksen, Michael Reese, Prodromos Daoutidis, University of Minnesota, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Small-scale, distributed production of ammonia better enables the use of renewable energy for its synthesis than the current paradigm of large-scale, centralized production. Pursuant to this idea, a small-scale Haber-Bosch process has been installed at the West Central Research and Outreach Center (WCROC) in Morris, MN [1] and there is ongoing work on an absorbent-enhanced process at the University of Minnesota [2], [3]. Using renewables to make ammonia would greatly improve the sustainability of fertilizer production, which currently accounts for 1% of total global energy consumption [4]. The promise of renewable-powered, distributed ammonia production for sustainability is in fact not limited to fertilizer, because ammonia also has potential as an energy-dense, carbon-neutral fuel. For example, using ammonia produced from renewable energy for nitrogen fertilizer, grain drying fuel and tractor fuel at the WCROC farm would reduce more than 90% of the fossil energy footprint associated with corn production [5].

In this light, we envision a distributed sustainable agricultural (farm) energy system (DSAE) fundamentally based on the idea of ammonia as not only a fertilizer, but also a fuel and a method of energy storage. Specifically, this system will use only renewable energy to produce ammonia for use as fertilizer and agricultural fuel (for cropping equipment and grain drying) at the scale of a single farm or an agricultural cooperative. It will also use renewables to meet local power and heat demands in a manner synergistic to distributed ammonia production; the difference in power and heat (hourly) and ammonia (monthly or biannually) demand time scales gives rise to opportunities for temporally flexible ammonia production and locally controllable power generation using ammonia. Heat integration will also be possible due to the exothermic nature of ammonia synthesis. Continue reading

Realisation of Large-Scale Green Ammonia Plants

Markus Will, thyssenkrupp Industrial Solutions, Germany

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

The global ammonia production is nowadays mostly based on fossil energy carriers (natural gas, coal, naphtha, etc.). It consumes approximately 1.4% fossil energy carriers and releases more than 1.4% of global CO2 emissions.

In order to continue the global transition from the fossil fuel and nuclear energy age to the renewable energy age, ammonia could play a key role. Beside the continued utilization for fertilizer industry, ammonia could become an energy and/or hydrogen carrier as well.

thyssenkrupp Industrial Solutions (tkIS) developed a concept to establish Green Ammonia Plants as an alternative to conventional world-scale ammonia plants. As industry leader in electrolysis (AWE technology) and ammonia business (uhde® ammonia synthesis), tkIS combines the knowledge in both technologies to offer electricity-based ammonia plants in the near future. Continue reading

Roadmap to All Electric Ammonia Plants

John B. Hansen*, Pat A. Han, Haldor Topsøe, Denmark

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Haldor Topsøe A/S is a world leading supplier of technology and catalyst for the ammonia industry.

It is also a developer of Solid Oxide Electrolyzer technology. A road map towards all electrical ammonia plants of the future has been worked out implementing at first steps hybrid natural gas based/classical electrolyzer technology and ultimately SOEC based plants without air separation units. Continue reading

Solid Oxide Cell Enabled Ammonia Synthesis and Ammonia Based Power Production

John B. Hansen
Haldor Topsøe, Denmark

NH3 Fuel Conference, Minneapolis, November 2, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Haldor Topsøe’s leading role as supplier of ammonia synthesis catalysts and technology is well known. The company has, however, also been active for decades in developing Solid Oxide Cell based stacks and systems.

The presentation will describe a novel, highly integrated process for ammonia synthesis based on Solid Oxide Electrolysis. The energy efficiency is very high due to ability of the SOEC to use steam generated from the synthesis reaction heat in the ammonia synthesis loop and the favorable thermodynamics of high temperature electrolysis. Continue reading

Future of Ammonia Production: Improvement of Haber-Bosch Process or Electrochemical Synthesis?

Grigorii Soloveichik
US Department of Energy – ARPA-E, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia, the second most produced chemical in the world (176 million tons in 2014), is manufactured at large plants (1,000 – 1,500 t/day) using Haber-Bosch process developed more than hundred years ago. A simple reaction of nitrogen and hydrogen (produced by steam methane reforming or coal gasification) consumes about 2% of world energy, in part due to the use of high pressure and temperature. With the global transition from fossil fuels to intermittent renewable energy sources there is a need for long term storage and long range transmission of energy, for which ammonia is perfect fit. To make it practical, it is necessary to match the scale of ammonia production with the scale of renewable energy sources, at the same or better capital cost per ton of NH3, and reduce the energy consumption. Continue reading

The Role of “Green” Ammonia in Decarbonising Energy Systems: Practical Demonstration and Economic Considerations

Ian Wilkinson
Siemens, United Kingdom

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia has the potential to contribute significantly to the decarbonisation of energy systems, by offering a practical, carbon-free hydrogen storage and transportation vector as well as a green fuel in its own right. To better understand the prospects and challenges surrounding the use of ammonia in energy systems, Siemens is leading a collaborative project to build and test an ammonia-based energy storage system at the Rutherford Appleton Laboratory in the UK. Together with its project partners (the UK Science and Technology Facilities Council, the University of Oxford and the University of Cardiff), and supported by Innovate UK, Siemens will demonstrate the full energy cycle of renewable power converted into ammonia and then back into electricity for grid export. Continue reading

Dutch Initiatives to Store Sustainable Energy in the Form of Ammonia

Hans Vrijenhoef
Proton Ventures, The Netherlands

NH3 Fuel Conference 2017, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Proton Ventures BV is a company dedicated to supply mini ammonia units for storing decentralised produced (sustainable) energy. Proton has developed a commercial unit for the production of small amounts of ammonia, which can store up to 25 MW of power or equivalent (bio-) gas energy.

Hans Vrijenhoef, as the director of the company, will give an overview of existing plans in The Netherlands to store this decentralised energy and to make use of this in an economic way. The N-Fuel units will be skid-mounted, safe in operation, and almost fully automated in order to keep CAPEX and OPEX costs lowest and show that ammonia units can be effective in saving costs versus other means of storage, like batteries. Continue reading

Decentralised ammonia production in the Netherlands

Hans Vrijenhoef
Proton Ventures, The Netherlands

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Our presentation will summarize the results of two government funded research projects Proton carried out over the last year. Continue reading