Ryuichi Murai*, Ryohei Omori, Takahiro Kitano, Hidetaka Higashino, Noriaki Nakatsuka, Fumiteru Akamatsu, Osaka University, Japan; Yuya Yoshizuru, UBE Industries, Japan; Jun Hayashi, Kyoto University, Japan
15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting
ABSTRACT
There are severe issues on increasing amount of carbon dioxide (CO2) emission in the world. Many studies are devoted to alternative fuels. One of promising candidates is the utilization of ammonia which is zero emission of CO2, a hydrogen energy carrier, and also can be burned directly as a fuel.
For direct combustion of ammonia in industrial furnaces, there were two issues which were weaker radiative heat flux and a huge amount of NOx emission compared with the combustion of methane. We already have reported [1] the solution of the former issue by using the oxygen enriched combustion.
The objective of this research is to study the reduction mechanism of NOx emissions in the ammonia / methane co-combustion in an industrial furnace both experimentally and numerically. Experimentally we measured the radiation spectra and the total radiative thermal flux under the condition of the ammonia fuel burned in a 10 kW furnace with a coaxial jet flame and additional two oxidizer inlets for the staging combustion. The spectrum measurement results show that the amount of NOx emission was in reverse proportion with the intensity of N2O spectrum in the downstream of the reaction zone in the furnace. This indicates that N2O, which is one of main intermediate species of NH3, reacts with NOx as a reduction reactant to nitrogen molecule. Continue reading