Category Archives: Conference Paper

Introducing the Global NH3 Fuel Federation

Stephen Crolius
Alliance Consulting Group, USA / NH3 Fuel Association

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Until recently, ammonia fuel was the focus of a few dozen individuals working in isolated groups. Institutional interest and support were limited at best. Now we are in a new stage: ammonia fuel is being investigated seriously in publicly and privately supported programs in most of the world’s leading economies. Continue reading

Thermochemical energy storage with ammonia and implications for ammonia as a fuel

Adrienne Lavine
Mechanical and Aerospace Engineering, University of California, Los Angeles, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

This seminar presents recent advances in ammonia-based thermochemical energy storage1 (TCES), supported by an award from the US Department of Energy SunShot program. The goal of SunShot is to “reduce the total installed cost of solar energy systems to $.06 per kWh by 2020.” Within the arena of concentrating solar thermal power, Sunshot has established goals for each subsytem, including reducing the cost of the energy storage subsystem to $15 per kWht of stored energy and enabling working fluid temperatures greater than 600°C, consistent with advanced, high performance power blocks. Continue reading

Research and Development of Ammonia-fueled SOFC Systems

Koichi Eguchi1*, Atthapon Srifa1, Takeou Okanishi1, Hiroki Muroyama1, Toshiaki Matsui1, Masashi Kishimoto1, Motohiro Saito1, Hiroshi Iwai1, Hideo Yoshida1, Masaki Saito2, Takeshi Koide2, Hiroyuki Iwai2, Shinsuke Suzuki2, Yosuke Takahashi2, Toshitaka Horiuchi3, Hayahide Yamasaki3, Shohei Matsumoto4, Shuji Yumoto4, Hidehito Kubo4, Jun Kawahara5, Akihiro Okabe5, Yuki Kikkawa6, Takenori Isomura6
1 Kyoto University; 2 Noritake; 3 Nippon Shokubai; 4 Toyota Industries; 5 Mitsui Chemical; 6 Tokuyama, Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Ammonia is a promising hydrogen carrier because of its high hydrogen density, low production cost, and ease in liquefaction and transport. Ammonia decomposes into nitrogen and hydrogen through a mildly endothermic process. The ammonia decomposition temperature is close to the operating conditions of solid oxide fuel cells (SOFCs). Therefore, the integration of these two devices is beneficial in terms of efficient heat and energy managements and will lead to the development of simplified generation systems. Continue reading

Electro-Synthesis of Ammonia for Grid Scale Energy Storage

Shekar Balagopal1*, Matt Robbins1, Alvare Javier1, Marc Flinders1, Joshua Johnston1, Fernando Garzon2, Jamie Gomez2, Cortney Kreller3, Rangachary Mukundan3, Yu Seung Kim3
1 Ceramatec Inc, 2 University of New Mexico, and 3 Los Alamos National Laboratory, USA

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ceramatec Inc., in partnership with its partners, will develop a lower temperature and higher efficiency membrane process to synthesize ammonia for energy storage. Continue reading

Ammonia Storage Materials Using Metal Halides and Borohydrides

Yoshitsugu Kojima
Institute for Advanced Materials Research, Hiroshima University, Japan

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ammonia (NH3) is easily liquefied by compression at 1 MPa and 25 °C, and has a highest volumetric hydrogen density of 10.7 kg H2 /100L in hydrogen carriers. The volumetric hydrogen density is above 1.5 times of liquid hydrogen at 0.1 MPa and -253 °C. The vapor pressure of liquid NH3 is similar to propane. Moreover it has a high gravimetric hydrogen density of 17.8 mass%. NH3 is burnable substance and has a side as an energy carrier which is different from other hydrogen carriers. The heat of formation of NH3 is 30.6 kJ/molH2. The value is about 1/10 of heat of combustion for hydrogen. Continue reading

Power Generation and Flame Visualization of Micro Gas Turbine Firing Ammonia or Ammonia-Methane Mixture

Norihiko Iki1*, Osamu Kurata1, Takayuki Matsunuma1, Takahiro Inoue1, Taku Tsujimura1, Hirohide Furutani1, Hideaki Kobayashi2, Akihiro Hayakawa2
1Fukushima Renewable Energy Institute, AIST (FREA), Japan
2Institute of Fluid Science, Tohoku University, Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. A standard combustor is replaced to a prototype combustor which enables a bi-fuel supply of kerosene and ammonia gas. Diffusion combustion is employed to the prototype combustor due to its flame stability. 44kW power generation was achieved by 100% heat from ammonia gas. Continue reading

Small Scale Low-Pressure Ammonia Synthesis

Mahdi Malmali1*, Michael Reese2, Alon McCormick1, Edward L. Cussler1
1Department of Chemical Engineering and Materials Science, and 2West Central Research and Outreach Center, University of Minnesota, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Ammonia is one of the most important chemical commodities in the US and will be a key component in helping the world meet the rising demand for food and energy. Ammonia is needed in distributed locations for agriculture (as fertilizer for small grain and corn production), for indirect hydrogen storage1 (transported as a liquid at moderate pressure to hydrogen stations), or as a liquid fuel2 (for internal combustion engines or solid oxide fuel cells). Continue reading

Ammonia for Green Energy Storage and Beyond

Ian Wilkinson
Siemens Corporate Technology, UK

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Siemens is participating in an all electric ammonia synthesis and energy storage system demonstration programme at Rutherford Appleton Laboratory, near Oxford. The demonstrator, which will run until December 2017, is supported by Innovate UK. Collaborators include the University of Oxford, Cardiff University and the Science & Technology Facilities Council. Continue reading

Combustion characteristics of ammonia/air flames for a model swirl burner and an actual gas turbine combustor

Akihiro Hayakawa*1, K.D. Kunkuma A. Somarathne1, Ekenechukwu C. Okafor1, Taku Kudo1, Osamu Kurata2, Norihiko Iki2, Hideaki Kobayashi1
1Institute of Fluid Science, Tohoku University, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Ammonia is expected not only as hydrogen energy carrier but also as carbon free fuel. For an industrial use of ammonia combustor, ammonia flame stabilized on a swirl combustor should be clarified. However, in order to realize an ammonia-fueled combustor, there are some issues to be solved, such as a difficulty of flame stabilization and reductions of NOx and ammonia emission. In this study, stabilization and emission characteristics of ammonia / air flames stabilized by a model swirl burner are investigated. Continue reading

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition

Sean-Thomas B. Lundin*, Thomas F. Fuerst, Jason C. Ganley, Colin A. Wolden, J. Douglas Way
Department of Chemical and Biological Engineering, Colorado School of Mines, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

It is well known that ammonia is being considered as a method of storing hydrogen. Although some fuel cells are being developed that can use ammonia directly as a fuel source, many fuel cell technologies still require an outside cracker to revert ammonia back into hydrogen for efficient use. In this regard, hydrogen permeable membranes, such as Pd and its alloys, have been targeted as potential membrane reactors in which the ammonia is cracked while the hydrogen is simultaneously separated. Pd and its alloys are expensive, but offer potentially perfect hydrogen purity that is highly preferable for certain fuel cells susceptible to ammonia poisoning. Yet, cheaper metals, such as V, Nb and Ta, may offer a more affordable alternative while maintaining perfect hydrogen selectivity. The first part of this talk will involve our work on ammonia decomposition using both Pd-based membranes and the cheaper V, Ta or Nb metals. Continue reading