Stephen Szymanski*, Wayne Gellett
Proton OnSite, United States
NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+
ABSTRACT
Ammonia-based fertilizers have enabled increases in food production to sustain the world’s population. Currently the major source of ammonia is the Haber-Bosch process, which requires high temperature and pressure and has low conversion efficiency, such that very large plants are required for economical production. Ammonia is therefore one of the most energy and carbon intensive chemical processes worldwide, largely due to the steam methane reforming step to produce the required hydrogen. Because of the very large plant scale and resulting centralization of production, ammonia may also be transported long distances to point of use, adding additional energy and emissions. Distributed, sustainable ammonia production would therefore have a huge impact on global energy use and related carbon emissions. Electrochemical solutions are well-suited to modularity and integration with renewable energy sources and can operate at much milder temperatures and pressures, but a catalyst is needed which is selective to ammonia generation vs competing reactions. Continue reading