Author Archives: NH3 Fuel Association

Solar Hydrogen and Ammonia System Status

David Toyne
Solutions for Automation, USA
The Raphael Schmuecker Memorial Solar Hydrogen System, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Further development results of the Raphael Schmuecker Memorial Solar Hydrogen and Ammonia prototype plant, discussing making of Nitrogen and Ammonia, the energy usage, and the general system efficiencies and output. Continue reading

Ammonia Storage in Metal Ammines

Jawza Alnawmasi*, Duncan H. Gregory
School of Chemistry, University of Glasgow, UK

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ammonia has attracted interest as a promising alternative fuel for internal combustion engines due to the fact that ammonia does not release carbon dioxide during combustion.[1] Storing ammonia in the form of metal ammines is the most notable way to overcome the challenges that are related to the use of NH3 in liquid form, namely the toxicity and corrosive nature of ammonia.[2] Ammine complexes of light transition metal halides (such as Co, Ni) are very promising candidates because they exhibit high ammonia contents and they are relatively stable at room temperature. Continue reading

Developments in Electrochemical Ammonia Synthesis

Stephen Szymanski*, Wayne Gellett
Proton Energy Systems, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Proton Energy Systems, d/b/a Proton OnSite, is a technology and commercialization leader in the field of membrane based electrolysis. The company was founded on the vision of utilizing electrolysis technology for the capture and storage of energy in high value applications. Recently, the concept of storing electrical energy in the form of a carbon neutral liquid fuel, particularly ammonia, has been gaining traction within the research investment community. Continue reading

Development of ammonia / natural gas dual fuel gas turbine combustor

Shintaro Ito*1, Soichiro Kato1, Tsukasa Saito1, Toshiro Fujimori1, Hideaki Kobayashi2
1IHI Corporation, Japan
2Institute of Fluid Science, Tohoku University, Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

NH3 is a carbon-free fuel, so it has the potential to reduce CO2 emission from the power plant when used as a fuel. However, NH3 has combustion characteristics different from conventional hydrocarbon fuels. The N atom in the ammonia molecule causes high NOx emission through combustion reactions. To develop a gas-turbine combustor, which burns a combination of NH3 and natural gas with controlled emissions, combustion characteristics have been studied experimentally and numerically by using a swirl-burner, which is typically used in gas-turbines. Continue reading

Overview of the KIER’s Electrochemical Ammonia Synthesis – Present State and Perspective

Chung-Yul Yoo*, Hyung Chul Yoon*, Dae Sik Yun, Jong-Nam Kim
Korea Institute of Energy Research (KIER), Republic of Korea

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ammonia has a potential as a carbon-free energy carrier since it contains 17.6wt% of hydrogen and can be easily stored and transported safely and efficiently. The state-of-the-art industrial process for ammonia production is the Haber-Bosch process. Although high temperature (450–500 °C) and pressure (150–300 bar) are used to dissociate triple-bonded nitrogen and to maximize the ammonia formation, the efficiency of the Haber–Bosch process is limited to 10–15%. Moreover, the process accompanies high greenhouse gases emission since hydrogen is produced from natural gas. In order to overcome the drawbacks of the Haber-Bosch process, the electrochemical ammonia synthesis has been developed as an alternative process. Continue reading

Ammonia Fuel Cell and Fuel Synthesis Using Protonic Ceramics

Chuancheng Duan, Jinahua Tong, Jason Ganley*, Ryan O’Hayre
Colorado School of Mines, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Proton-conducting ceramics synthesized with solid-state reactive sintering are employed as electrolytes for the synthesis of ammonia from hydrogen and nitrogen gases in electrolytic cells. Additionally, these cells function with excellent long-term stability and high efficiency when operated in galvanic (fuel cell) mode using ammonia fuel. Advances in electrolyte compositions and synthesis techniques are discussed alongside cell performance metrics. Continue reading

NOx emission analysis and flame stabilization of ammonia-hydrogen-air premixed flames

Hadi Nozari1, Arif Karabeyoğlu1,2
1Koç University, Istanbul, Turkey
2Space Propulsion Group, Palo Alto CA, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Based on its well-known merits, ammonia has been gaining special attention as a potential renewable energy carrier which can be replaced in power generation units. One of the major challenges with ammonia as a fuel is NOx emission, which has a complex underlying chemical kinetics. Continue reading

Progress in the Electrochemical Synthesis of Ammonia

V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides
Department of Chemical Engineering, Aristotle University, Greece
Chemical Processes & Energy Resources Institute, CERTH, Greece
Presenter: W. Grover Coors

13th Annual NH3 Fuel Conference, September 19, 2016

ABSTRACT

Ammonia is one of the most important and widely produced chemicals worldwide with a key role in the growth of human population. Nowadays, the main route for ammonia synthesis is the Haber-Bosch process, developed one century ago. In this process, Fe-based catalysts are usually employed at temperatures between 400 and 500°C and pressures between 130 and 170 bar.

As opposed to the industrial process, in nature, plants and bacteria have been producing ammonia for millions of years at mild conditions. Atmospheric nitrogen is reduced by solvated protons on the FeMo cofactor of the metalloenzyme nitrogenase. The natural method of nitrogen fixation has motivated several research groups to explore the electrochemical synthesis of ammonia at ambient pressure. Continue reading

Ammonia as a Key to Meeting the Fuel Demand of China

Forest (Zhaolin) Wang
College of Energy, Xiamen University, China

13th Annual NH3 Fuel Conference, September 20, 2016

ABSTRACT

Currently, China is facing a challenge of increasing its energy consumption and simultaneously decreasing its emissions. Particularly, the desire of owning a car is so strong in China that it cannot be easily mitigated by high pricing or taxing. This paper presents the statistical results of fuel consumption in China and predicts the fuel demand in near future, it then compares the fuel demand of China with the fuel production scale of the world. It is concluded that China must utilize clean alternative fuels to meet the fast increasing demand for automotive fuels.

The price, distribution infrastructure, and thermodynamic properties of methanol, ethanol, biodiesel, and ammonia are analyzed in order to assess the feasibility of implementing them as clean alternative fuels. Continue reading

Cracking ammonia

Bill David*1,2, Josh Makepeace2, Hazel Hunter1 and Tom Wood1
1ISIS Facility, Rutherford Appleton Laboratory, UK
2Inorganic Chemistry Laboratory, University of Oxford, UK

13th Annual NH3 Fuel Conference, September 19, 2016

ABSTRACT

In this talk, I will discuss our latest research in developing novel ammonia cracking catalysts. While ammonia can be used directly as a fuel in high temperature fuel cells, internal combustion engines and gas turbine, the ability to crack ammonia affordably and effectively increases the range of possibilities for utilising ammonia as an energy vector. Continue reading