Author Archives: NH3 Fuel Association

Simulation Analysis of NH3 Mixed Combustion in Clinker Manufacturing Process

Tatsurou Izumi*, Hiroki Kujiraoka, Yuya Yoshizuru, Takeshi Suemasu, Makoto Ueda, Toyoaki Niki, Takayasu Itou, Masayuki Nishio, UBE Industries, Japan; Ryuichi Murai, Fumiteru Akamatsu, Osaka University, Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Recent years, the action for the low-carbon society becomes active all over the world. NH3 has potential to become the free-carbon energy source. In SIP project, that Cabinet Office started, we work on the technology development applying NH3 to the field of industrial furnace (SIP: Strategic Innovation Promotion Program).

In this study, we evaluated the effect of NH3 use in the cement clinker manufacturing process. Cement manufacturing is one of the fields of industry to exhaust large amounts of CO2. As past works, we studied for the reduction of heat consumption rate, troubleshooting and so on by using kiln operation analysis tool, KilnSimu. This time, we applied the KilnSimu analysis technology to this work. Continue reading

Two Stage Ammonia Combustion in a Gas Turbine like Combustor for Simultaneous NO and Unburnt Ammonia Reductions

Akihiro Hayakawa*, K.D. Kunkuma A. Somarathne, Masaaki Tsukamoto, Taku Kudo, Hideaki Kobayashi, Tohoku University, Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Ammonia is expected not only as a hydrogen energy carrier but also as a carbon free fuel. Recently, ammonia fueled gas turbine combustor was successfully demonstrated. However, large amount of NOx was produced when ammonia burns because ammonia includes nitrogen atom in the ammonia molecule. In addition, unburnt ammonia concentration in exhaust gas also needs to be reduced. In this study, we proposed a combustion concept in order to reduce NO and unburnt ammonia concentrations in the exhaust gas simultaneously in a gas turbine like model swirl combustor. In this concept, two stage (rich – lean) combustion was employed. Two stage (rich – lean) combustion has been already employed in hydrocarbon fueled gas turbine combustors in order to reduce thermal NOx. However, the two stage combustion for ammonia fuel is different from that of hydrocarbon because production path of NO is different each other, i.e., NOx is generated via fuel NOx path in the ammonia flame. Continue reading

Development of Low-NOx Combustor of Micro Gas Turbine Firing Ammonia Gas

Osamu Kurata*, Norihiko Iki, Takahiro Inoue, Takayuki Matsunuma, National Institute of Advanced Industrial Science and Technology (AIST), Japan; Taku Tsujimura, Hirohide Furutani, Fukushima Renewable Energy Institute, AIST (FREA), Japan; Masato Kawano, Keisuke Arai, Toyota Energy Solutions, Japan; Ekenechukwu C. Okafor, Akihiro Hayakawa, Hideaki Kobayashi, Tohoku University, Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

A massive influx of renewable energy is required in order to mitigate global warming. Although hydrogen is a renewable media, its storage and transportation in large quantity is difficult. Ammonia, however, is a hydrogen energy carrier, and its storage and transportation technology is already established. Although ammonia fuel combustion was studied in the 1960s in the USA, the development of an ammonia fuel gas turbine had been abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carrier revives the usage of ammonia fuel. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan, in collaboration with Tohoku University successfully realized ammonia-kerosene gas turbine power generation in 2014, and ammonia fuel gas turbine power generation in 2015 by using 50-kWe class gas turbine [2, 3].

The drawback of the facility is that it requires a large-size selective catalytic reduction (SCR) to decrease the high concentrations of NOx. In order to promote the widespread of ammonia combustion gas turbine system, it is necessary to downsize SCR NOx reduction. In other words, it is important to reduce NOx emission from ammonia gas turbine combustor. AIST has begun developing low-NOx combustors by using a combustor test rig. Simultaneously, fundamental research was carried out at Tohoku Univ. It was found at Tohoku Univ. that rich-lean two-stage combustion method and a control of equivalence ratio of the primary combustion zone to around the value of 1.1 to 1.2 significantly decreases NO emissions in gas-turbine swirl combustor [4, 5]. Continue reading

Basic Co-Firing Characteristics of Ammonia with Pulverized Coal in a Single Burner Test Furnace

Akira Yamamoto*, Masayoshi Kimoto, Yasushi Ozawa, Saburo Hara, Central Research Institute of Electric Power Industry (CRIEPI), Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Ammonia is expected as a potential fuel to substitute fossil fuels, because it does not discharge carbon dioxide and is easily handled by liquefaction. There are several ways for the direct use of ammonia as a fuel; for example, use in fuel cells and combustion devices. One of the possible application is the combustion use in thermal power plants. In particular, co-firing of ammonia in coal-fired power plants seems to have a relatively great advantage on the suppression of greenhouse gases, because coal is one of the main emission source of carbon dioxide. On the other hand, it is concerned that concentration of nitrogen oxides (NOx), which is one of the typical atmospheric pollutant, in the flue gas would considerably increase due to the oxidation of ammonia. To utilize ammonia as a co-firing fuel in existing pulverized coal-fired power plant, without causing additional costs for the modification of the denitration equipment, it is important to develop a combustion technology that can suppress the NOx concentration in the flue gas. Co-firing characteristics of pulverized coal and ammonia, however, had not been evaluated except in the case of very low co-firing rate for the purpose of denitration in the pulverized coal flame. In this study, basic co-firing characteristics of pulverized coal and ammonia were investigated using a bench-scale single burner test furnace. Continue reading

Microwave Catalysis for Ammonia Synthesis Under Mild Reaction Conditions

Jianli Hu*, Hanjing Tian, Yan Luo, Xinwei Bai, West Virginia University, USA; Dushyant Shekhawat, Christina Wildfire, Victor Abdelsayed, Michael J. Spencer, National Energy Technology Laboratory, USA; Robert A. Dagle, Stephen Davidson, Pacific Northwest National Laboratory, USA; Albert E. Stiegman, Florida State University, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

A scalable, cost-effective catalytic process of ammonia synthesis is developed by using microwave excitation under mild reaction conditions. In this research project funded by DOE ARPA-E, our interdisciplinary team of WVU, NETL, PNNL, FSU and two industrial partners have demonstrated that ammonia synthesis can be carried out at 200-300 °C and ambient pressure. This transformational process integrates system elements of electromagnetic sensitive catalysts and microwave reactor design. Taking advantages of state-of-the art non-equilibrium microwave plasma technology, catalytic ammonia synthesis undergoes a new reaction pathway where the barrier for the initial dissociation of the dinitrogen is decoupled from the bonding energy of the intermediates. Continue reading

Creating a Redox Materials Database for Solar-Thermochemical Air Separation and Fuels Production

Josua Vieten*, Dorottya Guban, Martin Roeb, Christian Sattler, Institute of Solar Research, DLR (German Aerospace Center), Germany; Patrick Huck, Matthew Horton, Kristin Persson, Lawrence Berkeley National Laboratory, USA; Brendan Bulfin, ETH Zurich, Switzerland

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Converting heat from renewable sources into other forms of energy is considered an essential factor in the reduction of greenhouse gas emissions. For instance, high temperatures can be reached using concentrated solar power (CSP), and the thus-captured energy can be converted into so-called solar fuels via thermochemical processes. These consist of the partial reduction of a redox material, usually a metal oxide, at high temperatures following the exothermic re-oxidation of this material at a lower temperature level using steam or CO2, which are thus converted into hydrogen or carbon monoxide, respectively. These two gases can be combined to generate syngas for the production of hydrocarbons (see Fig. 1). Through the same process, a stream of mostly inert gas can be produced by re-oxidation with air, allowing air separation using renewable energy sources. Hydrogen production and air separation can also provide the feedstock for ammonia production through the Haber-Bosch process, as the achieved oxygen partial pressures can be kept low enough to avoid catalyst poisoning. [2] Ammonia produced through this method can be used for fertilizer production, or as a fuel for energy storage. Continue reading

Terrestrial Energy, National Lab, Southern Company – Partnership Overview Using Integral Molten Salt Reactor Technology with HyS Acid for Hydrogen Production

John Kutsch, Terrestrial USA, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Demands for safe secure supplies of potable water across the planet are increasing faster than can be provided by natural, ever depleting sources of fresh water. At the same time, world demand for electric power is also accelerating. Making H2 from Natural Gas is not an optimal or efficient process that is also un-economic at higher gas costs. An Integral Molten Salt Reactor (IMSR) is uniquely suited to provide the very high temperatures (585 °C+ working temps.) that are needed to both generate significant amounts of Hydrogen, Oxygen (a feed for industrial oxygen uses) and Electricity needed for advanced economies and industry.

Terrestrial Energy USA, Savanna River National Lab, Sandia National Lab, Idaho National Laboratory, and Southern Company are working to show that this new generation of IMSR would be the only effective system to create an H2 supply utilizing the HyS system to produce Hydrogen. The Hybrid Sulfur (HyS) Hydrogen Generation process has the potential to produce hydrogen gas using both thermal and electrical energy at a cost of <$2/kg. Continue reading

Ammonia Synthesis Via Radiofrequency Plasma Catalysis

Javishk Shah*, Maria Carreon, University of Tulsa, USA; Weizong Wang, Annemie Bogaerts, University of Antwerp, Belgium

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Introduction:
In 1909, a compound named Ammonia was discovered. Through the 20th century, the immense potential of this chemical was exploited by using in almost every product, from process industry for fertilizer and chemical production to every use in cosmetics, household cleaners and medicines. Recently, fuel cells operating on liquid ammonia as working fluid have been developed on research scale. Despite of using 1-2% of total energy production for the synthesis of this compound, no significant changes have been made to the process since the first Haber-Bosch process plant has been setup.

Plasma catalysis is the use of plasma and catalyst synergism for the synthesis of various compounds. In case of ammonia synthesis, it helps in shifting the rate-limiting step from nitrogen dissociation to NHx formation. The excitation source helps the molecules to reach excited and ionized states which ensures the abundance of radicals for radicals. Radio-Frequency plasma is once such tool for plasma-catalysis. The synthesis has been explored by Matasumoto et al.[1] but no concrete details about the reaction pathway and plasma-catalyst synergism have been reported. Continue reading

Advanced Catalysts Development for Small, Distributed, Clean Haber-Bosch Reactors

Adam Welch*, Jonathan Kintner, Joseph Beach, Starfire Energy, USA; Jason Ganley, Christopher Cadigan, Ryan O’Hayre, Colorado School of Mines, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

The traditional Haber-Bosch (HB) synthesis of anhydrous ammonia will adapt to clean power by sourcing the hydrogen from renewable electrolysis. However, the very large scale of current HB plant designs are not well-matched to smaller and more distributed clean power resources. Plant/reactor designs need to be made at a smaller scale in order to best utilize clean hydrogen. Small, megawatt scale HB reactors have an additional advantage of being better able ramp up and down with variable renewable power. This talk will detail ARPA-e funded work into the design and optimization of these smaller, clean NH3 reactors, which utilize much higher and variable space velocities, lower pressures, and gas adsorption rather than condensation for NH3 extraction.

The different synthesis conditions at smaller scale also require a rethinking of the existing HB iron catalysts, which have been optimized for large, low space velocity reactors. New, advanced heterogeneous catalysts, capable of 5X faster nitrogen fixation, will be discussed. This talk will detail the development of the catalyst, including the ternary oxide support and metal nanoclusters, both of which play a key role in the catalyst performance. Many phases of the ternary system were synthesized, characterized for surface area and metal dispersion, and tested in a differential reactor to map catalytic performance to support composition and structure. Additionally, different active metals were attached to the best performing oxide support, to study the activity dependence on metal species.

Read the abstract at the AIChE website.

DOWNLOAD

Download this presentation [PDF].

RELATED NH3 FUEL CONFERENCE PAPERS

2018: Rapid Ramp NH3 Prototype Reactor Update
2017: Fast-Ramping Reactor for CO2-Free NH3 Synthesis

LINKS

Starfire Energy
Ammonia Synthesis for Fuel, Energy Storage, and Agriculture Applications, ARPA-E OPEN program, 2015
Learn more about the 2018 NH3 Fuel Conference

Vanadium As a Potential Catalytic Membrane Reactor Material for NH3 Production

Simona Liguori*, Jennifer Wilcox, Worcester Polytechnic Institute, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

In solid or liquid states, ammonia salts and solutions are the active components of most synthetic fertilizers used in agriculture, which consume 83% of the world’s ammonia. Today, ammonia for fertilizers is industrially produced via the Haber-Bosch process at 400-500 °C and at pressures up to 30 MPa (300 bar). These harsh operating conditions are necessary due to the high affinity of dissociated nitrogen atoms towards the catalyst surface in addition to the high barrier associated with N2 dissociation. For these reasons, the need for advanced catalytic methods for the reduction of N2 to ammonia remains a requirement for sustainability in the food and energy cycle.

The aim of this work is to explore the potential of metallic membranes for N2 separation with the final intent to produce NH3. Based on a preliminary theoretical investigation using density functional theory, the Group V transition metals (e.g., vanadium (V), niobium (Nb) and tantalum (Ta)) show strong affinity toward N2. Continue reading