Tag Archives: Dual Fuel

NH3 / N2 / O2 Non-Premixed Flame in a 10 kW Experimental Furnace – Characteristics of Radiative Heat Transfer

Ryuichi Murai1*, Ryohei Omori1, Ryuki Kano1, Yuji Tada1, Hidetaka Higashino1, Noriaki Nakatsuka1, Jun Hayashi1, Fumiteru Akamatsu1, Kimio Iino2, Yasuyuki Yamamoto2, Yoshiyuki Hagiwara2
[1] Osaka University; and [2] Taiyo Nippon Sanso, Japan

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

There are severe issues on increasing amount of carbon dioxide (CO2) emission in the world. Many studies are devoted on alternative fuels. One of superior candidates is the utilization of hydrogen energy which can realize a low-carbon and hydrogen-based society. Ammonia might play an important role which is zero emission of CO2, and is useful for hydrogen energy carrier as a clean energy. Additionally, ammonia is an easily-liquefiable fuel with pressure of about 0.86 MPa and temperature of 293 K. Commercially, ammonia is produced in large quantity by the Haber–Bosch process. It is also to be produced by using catalyst with renewable energy sources, such as wind energy and solar energy. Continue reading

Efficient and Clean Combustion of Ammonia-Hydrogen-Air Mixtures

Hadi Nozari1, Arif Karabeyoğlu1,2
[1] Koç University, Istanbul, Turkey; [2] Space Propulsion Group, Palo Alto CA, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Based on its well-known merits ammonia has been gaining special attention as a potential renewable energy carrier which can be replaced in power generation systems. Considering its low flame speed and its potential for producing fuel NOx as the main challenges of combusting ammonia, flame stability, combustion efficiency, and NOx formation are experimentally investigated. Focus is on premixed ammonia-hydrogen-air flames with high mixture fractions of ammonia (60-90% by volume) under standard temperature and pressure conditions. Continue reading

Effects of the Thickness of the Burner Rim, the Velocities of Fuel and Air on Extinction Limit of Ammonia Coaxial Jet Diffusion Flame

Yohei Ishikawa1, Jun Hayashi1*, Hiroyuki Takeishi1, Takahiro Okanami1, Kimio Iino1, Fumiteru Akamatsu1, Yasuyuki Yamamoto2, Yoshiyuki Hagiwara2
[1] Osaka University; and [2] Taiyo Nippon Sanso, Japan

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia is regarded as one of the alternative fuels because CO2 doesn’t emit during the combustion process of ammonia. Ammonia also has advantages in storage and transportation. In addition, ammonia has a potential to be a “hydrogen carrier” because of high amount of hydrogen content. However, there are several combustion related problems such as the low flammability, the low radiative power and the high NOx formation. To use ammonia as a fuel, therefore, it is necessary to understand the fundamental phenomena of the combustibility of the ammonia such as laminar burning velocity, strength of the radiation and extinction limit. Since a coaxial jet diffusion flame is commonly used on the industrial furnaces, the extinction limit of ammonia coaxial jet diffusion flame is important to know for developing ammonia-flamed furnaces. Continue reading

Detailed Observation of Coal-Ammonia Co-Combustion Processes

Noriaki Nakatsuka*, Junpei Fukui, Kazuki Tainaka, Hidetaka Higashino, Jun Hayashi, Fumiteru Akamatsu
Osaka University, Japan

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Coal-fired power generation is supplying about 30% of the world’s primary energy. Almost all of coal-fired power plants in Japan employ the pulverized coal combustion method. In the pulverized coal combustion, coal is pulverized into a powder of several tens of microns. This method enables to burn coal effectively because of the large surface to volume ratio. Pulverized coal particles are supplied to the actual boilers with primary air whose Air/Coal ratio (mass flow rate of primary air/mass flow rate of pulverized coal) is set to 2.0. Co-combustion of coal with ammonia has been studied with the aim of reducing CO2 emissions in coal boilers and coal power plants in terms of a concept to use ammonia as a renewable fuel from solar, wind, etc. Continue reading

Combustion Emissions from NH3 Fuel Gas Turbine Power Generation Demonstrated

Osamu Kurata1*, Norihiko Iki1, Takahiro Inoue1, Takayuki Matsunuma1, Taku Tsujimura2, Hirohide Furutani2, Hideaki Kobayashi3, Akihiro Hayakawa3
[1] National Institute of Advanced Industrial Science and Technology (AIST); [2] Fukushima Renewable Energy Institute, AIST (FREA); and [3] Tohoku University, Japan

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

To protect against global warming, a massive influx of renewable energy is expected. Although H2 is a renewable media, its storage and transportation in large quantity is difficult. NH3 fuel, however, is an H2 energy carrier and carbon-free fuel, and its storage and transportation technology is already established. Although NH3 fuel combustion was studied in the 1960s in the USA, the development of an NH3 fuel gas turbine had been abandoned because combustion efficiency was unacceptably low [1]. Recent demand for H2 energy carrier revives the usage of NH3 fuel, but no one has attempted an actual design setup for NH3 fuel gas turbine power generation. The National Institute of Advanced Industrial Science and Technology (AIST) in Japan collaborated with Tohoku University successfully performed NH3-kerosene gas turbine power generation in 2014, and NH3 fuel gas turbine power generation in 2015 [2]. Continue reading

Power Generation and Flame Visualization of Micro Gas Turbine Firing Ammonia or Ammonia-Methane Mixture

Norihiko Iki1*, Osamu Kurata1, Takayuki Matsunuma1, Takahiro Inoue1, Taku Tsujimura1, Hirohide Furutani1, Hideaki Kobayashi2, Akihiro Hayakawa2
1Fukushima Renewable Energy Institute, AIST (FREA), Japan
2Institute of Fluid Science, Tohoku University, Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

A demonstration test with the aim to show the potential of ammonia-fired power plant is planned using a micro gas turbine. 50kW class turbine system firing kerosene is selected as a base model. A standard combustor is replaced to a prototype combustor which enables a bi-fuel supply of kerosene and ammonia gas. Diffusion combustion is employed to the prototype combustor due to its flame stability. 44kW power generation was achieved by 100% heat from ammonia gas. Continue reading

Solar Hydrogen and Ammonia System Status

David Toyne
Solutions for Automation, USA
The Raphael Schmuecker Memorial Solar Hydrogen System, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

Further development results of the Raphael Schmuecker Memorial Solar Hydrogen and Ammonia prototype plant, discussing making of Nitrogen and Ammonia, the energy usage, and the general system efficiencies and output. Continue reading

Development of ammonia / natural gas dual fuel gas turbine combustor

Shintaro Ito*1, Soichiro Kato1, Tsukasa Saito1, Toshiro Fujimori1, Hideaki Kobayashi2
1IHI Corporation, Japan
2Institute of Fluid Science, Tohoku University, Japan

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

NH3 is a carbon-free fuel, so it has the potential to reduce CO2 emission from the power plant when used as a fuel. However, NH3 has combustion characteristics different from conventional hydrocarbon fuels. The N atom in the ammonia molecule causes high NOx emission through combustion reactions. To develop a gas-turbine combustor, which burns a combination of NH3 and natural gas with controlled emissions, combustion characteristics have been studied experimentally and numerically by using a swirl-burner, which is typically used in gas-turbines. Continue reading

Ammonia as a Key to Meeting the Fuel Demand of China

Forest (Zhaolin) Wang
College of Energy, Xiamen University, China

13th Annual NH3 Fuel Conference, September 20, 2016

ABSTRACT

Currently, China is facing a challenge of increasing its energy consumption and simultaneously decreasing its emissions. Particularly, the desire of owning a car is so strong in China that it cannot be easily mitigated by high pricing or taxing. This paper presents the statistical results of fuel consumption in China and predicts the fuel demand in near future, it then compares the fuel demand of China with the fuel production scale of the world. It is concluded that China must utilize clean alternative fuels to meet the fast increasing demand for automotive fuels.

The price, distribution infrastructure, and thermodynamic properties of methanol, ethanol, biodiesel, and ammonia are analyzed in order to assess the feasibility of implementing them as clean alternative fuels. Continue reading

Cracking ammonia

Bill David*1,2, Josh Makepeace2, Hazel Hunter1 and Tom Wood1
1ISIS Facility, Rutherford Appleton Laboratory, UK
2Inorganic Chemistry Laboratory, University of Oxford, UK

13th Annual NH3 Fuel Conference, September 19, 2016

ABSTRACT

In this talk, I will discuss our latest research in developing novel ammonia cracking catalysts. While ammonia can be used directly as a fuel in high temperature fuel cells, internal combustion engines and gas turbine, the ability to crack ammonia affordably and effectively increases the range of possibilities for utilising ammonia as an energy vector. Continue reading