Ryuichi Murai1*, Ryohei Omori1, Ryuki Kano1, Yuji Tada1, Hidetaka Higashino1, Noriaki Nakatsuka1, Jun Hayashi1, Fumiteru Akamatsu1, Kimio Iino2, Yasuyuki Yamamoto2, Yoshiyuki Hagiwara2
[1] Osaka University; and [2] Taiyo Nippon Sanso, Japan
NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+
ABSTRACT
There are severe issues on increasing amount of carbon dioxide (CO2) emission in the world. Many studies are devoted on alternative fuels. One of superior candidates is the utilization of hydrogen energy which can realize a low-carbon and hydrogen-based society. Ammonia might play an important role which is zero emission of CO2, and is useful for hydrogen energy carrier as a clean energy. Additionally, ammonia is an easily-liquefiable fuel with pressure of about 0.86 MPa and temperature of 293 K. Commercially, ammonia is produced in large quantity by the Haber–Bosch process. It is also to be produced by using catalyst with renewable energy sources, such as wind energy and solar energy. Continue reading