Tag Archives: Energy Storage

Future of Ammonia Production: Improvement of Haber-Bosch Process or Electrochemical Synthesis?

Grigorii Soloveichik
US Department of Energy – ARPA-E, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia, the second most produced chemical in the world (176 million tons in 2014), is manufactured at large plants (1,000 – 1,500 t/day) using Haber-Bosch process developed more than hundred years ago. A simple reaction of nitrogen and hydrogen (produced by steam methane reforming or coal gasification) consumes about 2% of world energy, in part due to the use of high pressure and temperature. With the global transition from fossil fuels to intermittent renewable energy sources there is a need for long term storage and long range transmission of energy, for which ammonia is perfect fit. To make it practical, it is necessary to match the scale of ammonia production with the scale of renewable energy sources, at the same or better capital cost per ton of NH3, and reduce the energy consumption. Continue reading

Delivering Clean Hydrogen Fuel from Ammonia Using Metal Membranes

Michael Dolan
CSIRO, Australia

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

The use of ammonia (NH3) as a hydrogen vector can potentially enable renewable energy export from Australia to markets in Asia and Europe. With a higher hydrogen density than liquid H2, plus existing production and transport infrastructure, and well-developed safety practices and standards, the financial and regulatory barriers to this industry are lower than for liquid H2 transport. The only significant technical barrier which remains, however, is the efficient utilisation of ammonia fuel at or near the point of use, either directly or through the production of H2. Continue reading

The Role of “Green” Ammonia in Decarbonising Energy Systems: Practical Demonstration and Economic Considerations

Ian Wilkinson
Siemens, United Kingdom

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia has the potential to contribute significantly to the decarbonisation of energy systems, by offering a practical, carbon-free hydrogen storage and transportation vector as well as a green fuel in its own right. To better understand the prospects and challenges surrounding the use of ammonia in energy systems, Siemens is leading a collaborative project to build and test an ammonia-based energy storage system at the Rutherford Appleton Laboratory in the UK. Together with its project partners (the UK Science and Technology Facilities Council, the University of Oxford and the University of Cardiff), and supported by Innovate UK, Siemens will demonstrate the full energy cycle of renewable power converted into ammonia and then back into electricity for grid export. Continue reading

Ammonia Renewable Energy Fuel Systems at Continental Scale

William C. Leighty
The Leighty Foundation, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

We must soon “run the world on renewables” but cannot, and should not try to, accomplish this entirely with electricity transmission. New, abundant, low-cost, unconventional natural gas supplies are finite; burning adds CO2 to Earth’s atmosphere.

Humanity’s goal must be nothing less than: Transforming the world’s largest industry from ~80% fossil to ~100% renewable, CO2-emission-free energy sources as quickly as we prudently and profitably can.

We should now carefully consider using pipeline networks, rather than the electricity grid, for solving the three salient technical problems of renewable energy (RE) at lower cost Continue reading

NH3: The Optimal Alternative Fuel

Norm Olson
NH3 Fuel Association, United States

NH3 Fuel Conference 2017, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Unlike some technology areas where “all of the above” has significant advantages, there are tremendous advantages associated with choosing a single, optimized, liquid transportation fuel. The cost, efficiency and environmental benefits associated with choosing an optimized liquid transportation fuel are enormous and merit serious consideration.

NH3 most closely meets the criteria for an ideal liquid transportation fuel. Continue reading

Thermochemical energy storage with ammonia and implications for ammonia as a fuel

Adrienne Lavine
Mechanical and Aerospace Engineering, University of California, Los Angeles, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

This seminar presents recent advances in ammonia-based thermochemical energy storage1 (TCES), supported by an award from the US Department of Energy SunShot program. The goal of SunShot is to “reduce the total installed cost of solar energy systems to $.06 per kWh by 2020.” Within the arena of concentrating solar thermal power, Sunshot has established goals for each subsytem, including reducing the cost of the energy storage subsystem to $15 per kWht of stored energy and enabling working fluid temperatures greater than 600°C, consistent with advanced, high performance power blocks. Continue reading

Electro-Synthesis of Ammonia for Grid Scale Energy Storage

Shekar Balagopal1*, Matt Robbins1, Alvare Javier1, Marc Flinders1, Joshua Johnston1, Fernando Garzon2, Jamie Gomez2, Cortney Kreller3, Rangachary Mukundan3, Yu Seung Kim3
1 Ceramatec Inc, 2 University of New Mexico, and 3 Los Alamos National Laboratory, USA

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ceramatec Inc., in partnership with its partners, will develop a lower temperature and higher efficiency membrane process to synthesize ammonia for energy storage. Continue reading

Ammonia for Green Energy Storage and Beyond

Ian Wilkinson
Siemens Corporate Technology, UK

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Siemens is participating in an all electric ammonia synthesis and energy storage system demonstration programme at Rutherford Appleton Laboratory, near Oxford. The demonstrator, which will run until December 2017, is supported by Innovate UK. Collaborators include the University of Oxford, Cardiff University and the Science & Technology Facilities Council. Continue reading

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition

Sean-Thomas B. Lundin*, Thomas F. Fuerst, Jason C. Ganley, Colin A. Wolden, J. Douglas Way
Department of Chemical and Biological Engineering, Colorado School of Mines, USA

NH3 Fuel Conference, Los Angeles, September 19, 2016

ABSTRACT

It is well known that ammonia is being considered as a method of storing hydrogen. Although some fuel cells are being developed that can use ammonia directly as a fuel source, many fuel cell technologies still require an outside cracker to revert ammonia back into hydrogen for efficient use. In this regard, hydrogen permeable membranes, such as Pd and its alloys, have been targeted as potential membrane reactors in which the ammonia is cracked while the hydrogen is simultaneously separated. Pd and its alloys are expensive, but offer potentially perfect hydrogen purity that is highly preferable for certain fuel cells susceptible to ammonia poisoning. Yet, cheaper metals, such as V, Nb and Ta, may offer a more affordable alternative while maintaining perfect hydrogen selectivity. The first part of this talk will involve our work on ammonia decomposition using both Pd-based membranes and the cheaper V, Ta or Nb metals. Continue reading

Ammonia Storage in Metal Ammines

Jawza Alnawmasi*, Duncan H. Gregory
School of Chemistry, University of Glasgow, UK

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Ammonia has attracted interest as a promising alternative fuel for internal combustion engines due to the fact that ammonia does not release carbon dioxide during combustion.[1] Storing ammonia in the form of metal ammines is the most notable way to overcome the challenges that are related to the use of NH3 in liquid form, namely the toxicity and corrosive nature of ammonia.[2] Ammine complexes of light transition metal halides (such as Co, Ni) are very promising candidates because they exhibit high ammonia contents and they are relatively stable at room temperature. Continue reading