Akira Yamamoto*, Masayoshi Kimoto, Yasushi Ozawa, Saburo Hara, Central Research Institute of Electric Power Industry (CRIEPI), Japan
15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting
ABSTRACT
Ammonia is expected as a potential fuel to substitute fossil fuels, because it does not discharge carbon dioxide and is easily handled by liquefaction. There are several ways for the direct use of ammonia as a fuel; for example, use in fuel cells and combustion devices. One of the possible application is the combustion use in thermal power plants. In particular, co-firing of ammonia in coal-fired power plants seems to have a relatively great advantage on the suppression of greenhouse gases, because coal is one of the main emission source of carbon dioxide. On the other hand, it is concerned that concentration of nitrogen oxides (NOx), which is one of the typical atmospheric pollutant, in the flue gas would considerably increase due to the oxidation of ammonia. To utilize ammonia as a co-firing fuel in existing pulverized coal-fired power plant, without causing additional costs for the modification of the denitration equipment, it is important to develop a combustion technology that can suppress the NOx concentration in the flue gas. Co-firing characteristics of pulverized coal and ammonia, however, had not been evaluated except in the case of very low co-firing rate for the purpose of denitration in the pulverized coal flame. In this study, basic co-firing characteristics of pulverized coal and ammonia were investigated using a bench-scale single burner test furnace. Continue reading