Tag Archives: Transport Fuel

Exploring ammonia’s potential as a marine fuel

Niels de Vries, C-Job Naval Architects, Netherlands

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

International shipping is responsible for approximately 90% of the world trade. Looking to the relative emissions, in gram CO2 per ton km, maritime transport score significantly better compared to others like rail, road and airfreight. However, since most of the transport is done by ships the absolute contribution of greenhouse gases (GHG) by the maritime industry is clearly visible. Of all the global emissions the maritime industry is responsible for 3% CO2, 13% SOx, and 15% NOx.

To reduce SOx and NOx several regulations are either upcoming or already in play. Current regulations require the sulphur emissions to be less than 0.1% in all Environmental Control Areas (ECA). A global sulphur cap is upcoming in 2020 limiting the sulphur emissions to 0.5%. NOx emissions are currently regulated by IMO Tier II where IMO Tier III is already in affect in the ECAs yet IMO Tier III is still pending for global enforcement. Basic regulations have also been arranged to reduce CO2 emissions by means of an Energy Efficiency Design Index (EEDI). However, the EEDI requirements are not very strict yet.

To comply with these new and upcoming regulations the marine industry is moving towards the application of natural gas as a fuel, exhaust gas treatment and usage of cleaner marine diesel fuels. With the goals of IMO to reduce the total GHG by at least 50% by 2050 (compared to 2008) this shift alone will not be enough to meet up with these ambitions. Since shipping (and aviation) were not covered by the Paris agreement these IMO goals are an important push towards renewable fuels. The challenges for implementation of renewable fuels in the maritime industry regard both a significant expansion of renewable energy production and viable business cases for ship owners. For the ship owner this can come for either a cargo owner willing to pay more for clean transport or taxations on harmful emissions.

Applying renewable fuels for the maritime industry one can think of several options like: liquid methane, ethanol, methanol, liquid ammonia, liquid hydrogen and compressed hydrogen. Considering the importance of volumetric energy density [GJ/m3] and also renewable synthetic production cost [MJ/MJ] ammonia turns out to be a very balanced solution. Ammonia has a significant higher volumetric energy than liquid hydrogen yet requiring clearly less energy for renewable synthetic production than the carbon carriers. These are the main reasons to further investigate the potential of ammonia as a fuel.

Suitable types of marine power generation need to be able to cope with the marine environment. Dynamic behaviour and load response are crucial aspects for configurations which have the engine directly connected to the propeller. Furthermore, part load conditions are also important aspects since most operational profiles cover several modes.

To realise ammonia as marine fuel the internal combustion engine seems to be a good solution for now. Ammonia + hydrogen (obtained from ammonia cracking) mixtures are capable to approach similar characteristics as fossil fuels like methane. Therefore, scaling up the ammonia combustion engine should not be a problem. In the future fuel cells could be replacing the combustion engine as they are capable delivering higher efficiencies and do not emit NOx. Yet nowadays fuel cells capable using ammonia directly lack power density and cost effectiveness.

Read the abstract at the AIChE website.

DOWNLOAD

Download this presentation [PDF].

LINKS

C-Job Naval Architects
Learn more about the 2018 NH3 Fuel Conference

Improved Method of Using Hydrogen and Ammonia Fuels for an Internal Combustion Engine

David Toyne*, Solutions for Automation, USA; Jay Schmuecker, Pinehurst Farm, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

A tractor mounted internal combustion engine is fueled by Hydrogen or a combination of Hydrogen and Ammonia.

Developments of an improved method of fuel injection and ignition control. Hydrogen is port injected in the intake manifold, and liquid ammonia is injected in the throttle body. A dual fuel ECU, Engine Control Unit, controls the fuel mixtures and the firing of multiple coils for ignition.
The paper will address significant engine performance improvements and the resulting fuel consumption and engine emissions levels. Continue reading

Ammonia-to-Hydrogen System for FCEV Refuelling

Michael D. Dolan, CSIRO, Australia

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Ammonia can play a significant role in fuelling the world’s growing fuel cell electric vehicle (FCEV) fleet through technologies which allow the decomposition of NH3, and subsequent extraction and purification of H2. CSIRO has recently demonstrated a pilot-scale ammonia-to-hydrogen system, incorporating an ammonia decomposition stage with a subsequent membrane-based hydrogen purification stage, at a rate of several kilograms of H2 per day. Through partnerships with an industrial gas producer and two FCEV manufacturers, the resulting H2 has been compressed and dispensed into FCEVs. System design, materials, performance and strategies for scale-up and demonstration will be discussed. Continue reading

Our Iowa Renewable Hydrogen and Ammonia Generation System

Jay Schmuecker1*, David Toyne2*
[1] Pinehurst Farm; and [2] Solutions for Automation, United States

NH3 Fuel Conference, Minneapolis, November 2, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

The presentation will summarize the development of the demonstration size renewable fuel and fertilizer system on my Iowa farm. Solar power, water, and air are used to make hydrogen and ammonia fuel used to power a modified John Deere 7810 tractor. The ammonia can also be used to fertilize corn cropland. The development of the ammonia reactor will be described and its performance discussed. There are no carbon emissions in either the generation or consumption of the hydrogen and ammonia. Continue reading

Effect of Water on the Auto-Ignition of a Non-Carbon Nitrogen-Based Monofuel

Bar Mosevitzky*, Rotem Azoulay, Lilach Naamat, Gennady E. Shter, Gideon S. Grader
Technion – Israel Institute of Technology, Israel

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

The fluctuating nature of renewable energy sources is becoming a limiting factor in their widespread utilization. Energy storage solutions must be developed to overcome this issue. Chemical fuels are considered to be a promising solution to this problem. We are studying the implementation of nitrogen-based fuels for this purpose. An aqueous solution of ammonium nitrate and ammonium hydroxide (AAN) is suggested as a carbon-free nitrogen-based synthetic monofuel. This solution may serve as a renewable nitrogen-based synthetic hydrogen carrier since it is safe to store, transport and utilize. Since ammonium hydroxide (AH) and ammonium nitrate (AN) act as reducer and net oxidizer, they can combust without the need for an external oxidizer (i.e. O2/Air). The amount of water in this solution greatly affects the saturation point and hence the sensitivity to re-crystallization at low temperatures which in turn affects the storage conditions. Thus, the effect of AAN’s water content on its thermal autoignition must be investigated. Continue reading

Direct Ammonia Fuel Cell Utilizing an OH- Ion Conducting Membrane Electrolyte

Yushan Yan1, Shimshon Gottesfeld1,2*
[1] University of Delaware; and [2] FC Consulting Ltd, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

We describe the techno-economic background and the R&D work scheduled for the ARPA-E project “Direct Ammonia Fuel Cells (DAFCs) for Transportation Applications,” which is about to start under the REFUEL program. The project is led by Shimshon Gottesfeld & Yushan Yan, University of Delaware, Jia Wang & Radoslav Adzic, Brookhaven National Laboratory, Chulsung Bae, Rensselaer Polytechnic Institute, and Bamdad Bahar, Xergy Inc. The multidisciplinary R&D work scheduled will cover the fields of advanced membrane and electrocatalyst development, MEA development and fabrication, and stack engineering. The latter two activities will be supported by work at POCellTech, with Miles Page as lead.

The Project Vision is creation of a high power density, direct ammonia fuel cell suitable for transportation applications, using a hydroxide exchange membrane electrolyte and operating the cell near 100°C. A practical ammonia fuel cell should enable use of the lowest cost, carbon-neutral liquid fuel for clean, long-range transportation. Continue reading

Development of New Combustion Strategy for Internal Combustion Engine Fueled By Pure Ammonia

Donggeun Lee*, Hyungeun Min, Hyunho Park, Han Ho Song
Seoul National University, South Korea

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia is considered as a promising hydrogen-carrier with good storability and transportability, which, then, can be used as a carbon-free fuel as needed. However, once the ammonia is produced from the regenerative sources, it is essential to develop the energy conversion device of the chemical energy stored in ammonia into some other useful forms, e.g. electricity. Among various candidates, we focus on an internal combustion engine as energy conversion device which can be applied on automobile, power plant and etc. and can use ammonia as fuel only by simple modification. There have been many studies on the use of ammonia as an engine fuel, but rather poor combustion characteristics of ammonia for conventional engine combustion techniques was seen as difficult to overcome and nearly all the researchers compromised by using additional fuels which combusted better than ammonia for their purposes. Continue reading

Development of Materials and Systems for Ammonia-Fueled Solid Oxide Fuel Cells

Koichi Eguchi1*, Yosuke Takahashi2, Hayahide Yamasaki3, Hidehito Kubo4, Akihiro Okabe5, Takenori Isomura6, Takahiro Matsuo7
[1] Kyoto University; [2] Noritake; [3] Nippon Shokubai; [4] Toyota Industries; [5] Mitsui Chemicals; [6] Tokuyama; and [7] IHI Corporation, Japan

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Hydrogen is the primary fuel source for fuel cells. However, the low volume density and difficulty in storage and transportation are major obstacles for the practical utilization. On-site generation of hydrogen from its carrier is an effective method for the fuel supply. Among various hydrogen carriers, ammonia is one of the promising candidates. Ammonia has high hydrogen density. The boiling point of ammonia is relatively high, leading to the ease in liquefaction and transportation. Hydrogen can be produced from ammonia with a mildly endothermic process. The reaction temperature of ammonia cracking is about 600˚C or higher which is close to the operating temperature of solid oxide fuel cells (SOFCs). The integration of these two devices is beneficial in terms of heat and energy managements and will lead to the development of simplified power generation systems. In this presentation, three types of ammonia-fueled SOFC systems have been investigated. Continue reading

Ammonia Fuel Safety

Trevor Brown
AmmoniaIndustry.com, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

This paper introduces the existing literature on the safety of using ammonia as a fuel, which provides comparative data for a range of traditional and alternative fuels and energy carriers. The studies reviewed conclude that risk levels associated with using ammonia as a fuel are “similar to those of gasoline,” or “similar, if not lower than for the other fuels,” also including hydrogen, methanol, LPG, and CNG. Ammonia as a fuel can meet all “acceptable” risk levels in even the most stringent regulatory jurisdictions. Continue reading

NH3: The Optimal Alternative Fuel

Norm Olson
NH3 Fuel Association, United States

NH3 Fuel Conference 2017, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Unlike some technology areas where “all of the above” has significant advantages, there are tremendous advantages associated with choosing a single, optimized, liquid transportation fuel. The cost, efficiency and environmental benefits associated with choosing an optimized liquid transportation fuel are enormous and merit serious consideration.

NH3 most closely meets the criteria for an ideal liquid transportation fuel. Continue reading