Tag Archives: Economics

Design Optimization of an Ammonia-Based Distributed Sustainable Agricultural Energy System

Matthew J. Palys*, Anatoliy Kuznetsov, Joel Tallaksen, Michael Reese, Prodromos Daoutidis, University of Minnesota, USA

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

Small-scale, distributed production of ammonia better enables the use of renewable energy for its synthesis than the current paradigm of large-scale, centralized production. Pursuant to this idea, a small-scale Haber-Bosch process has been installed at the West Central Research and Outreach Center (WCROC) in Morris, MN [1] and there is ongoing work on an absorbent-enhanced process at the University of Minnesota [2], [3]. Using renewables to make ammonia would greatly improve the sustainability of fertilizer production, which currently accounts for 1% of total global energy consumption [4]. The promise of renewable-powered, distributed ammonia production for sustainability is in fact not limited to fertilizer, because ammonia also has potential as an energy-dense, carbon-neutral fuel. For example, using ammonia produced from renewable energy for nitrogen fertilizer, grain drying fuel and tractor fuel at the WCROC farm would reduce more than 90% of the fossil energy footprint associated with corn production [5].

In this light, we envision a distributed sustainable agricultural (farm) energy system (DSAE) fundamentally based on the idea of ammonia as not only a fertilizer, but also a fuel and a method of energy storage. Specifically, this system will use only renewable energy to produce ammonia for use as fertilizer and agricultural fuel (for cropping equipment and grain drying) at the scale of a single farm or an agricultural cooperative. It will also use renewables to meet local power and heat demands in a manner synergistic to distributed ammonia production; the difference in power and heat (hourly) and ammonia (monthly or biannually) demand time scales gives rise to opportunities for temporally flexible ammonia production and locally controllable power generation using ammonia. Heat integration will also be possible due to the exothermic nature of ammonia synthesis. Continue reading

Ship Operation Using LPG and Ammonia As Fuel on MAN B&W Dual Fuel ME-LGIP Engines

René Sejer Laursen, MAN Diesel & Turbo, Denmark

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

LPG has been used as fuel in the car industry for many years and now, with Exmar and Statoil’s orders for ocean-going ships fitted with the dual fuel ME-LGIP engine, LPG will be used on marine engines as well. The new engine series is currently being developed to match all types of bigger merchant ships. This order was made in consequence of the new 2020 0.5% sulphur fuel cap, but this step forward has not stopped the discussion and interest in lowering CO2, NOx, SOx and particulate emissions even further. On the contrary, it has actually been further fuelled by the latest IMO meeting targeting a 50%-cut in greenhouse gas emissions from ocean-going shipping by 2050 compared with 2008.

Because the world fleet has increased since 2008, and thus CO2 emissions as well, it has been realised that this goal cannot be met without the use of carbon-free fuels. In shipping, 30 years corresponds to the lifetime of a ship, and owners will therefore soon need to consider this when they select the propulsion solution for their next ship. And as marine engine maker, MAN Diesel & Turbo needs to be fully prepared.

Using LPG as fuel on the two-stroke ME-LGIP engine offers similar emission benefits as with LNG, which reduces emissions significantly compared with MDO. Therefore, there are very good environmental reasons for using this fuel in coastal areas, on inland waterways and on deep sea. The LGIP engine solution system can also be applied on engine sizes from 5 to 85 MW, which are suitable for tankers, bulk carriers, container vessels, etc.

It is expected that the need to reduce CO2 emissions will fuel a continued growth in shipping. And because sea transportation has proven to be less CO2 polluting than both trucks and trains using fossil fuels this trend is expected to continue. Furthermore, the world population is increasing as well, and this is expected to increase the shipping fleet. So significant CO2 reduction is mandatory in shipping, and this can be improved by using carbon-free fuels such as bio-LPG/LNG, and the so-called “electric fuels”, etc. There are also plans to remove CO2 from methane to produce carbon-free ammonia, but in order to be fully carbon free, the CO2 should be removed by, for example, injecting it into the seabed. MAN Diesel & Turbo already have dual fuel engines in our engine programme that can operate on LNG and methanol, but ammonia as a fuel has not yet been investigated for use on two-stroke engines.

This paper describes the technology behind the ME-LGIP dual fuel MAN B&W two-stroke engines, using LPG as fuel, and its associated LPG tank and fuel supply systems. The engine requires a gas supply pressure of 50-bar and controlled to a temperature of 45°C. At this temperature and pressure, the LPG is liquid, and different fuel supply solutions are available for generating this pressure for the liquid. Hence, the ME-LGIP for LPG will use liquid gas for injection, contrary to the ME-GI for LNG, where the methane is injected in gaseous form. All the way from tank to engine, the LPG remain in liquid phase, and conventional pumps can be used to generate the pressure. Furthermore, we have lately found that this engine technology, with minor modification, can also be used to burn ammonia, so the paper will also describe the modification needed in order to build an engine that is able to burn LPG as well as ammonia.

Safety is a concern when both LPG and ammonia is used as fuel on an engine located in an engine room. This is because LPG in gaseous form, contrary to methane, is heavier than air and will drop in case of leakage, and because ammonia in a gaseous form is toxic. This safety has been analysed, and our safety considerations and precautions will be described in details. Continue reading

Cost Evaluation Study on CO2-Free Ammonia and Coal Co-Fired Power Generation Integrated with Cost of CCS

Kazutaka Hiraoka*, Yasushi Fujimura, Yoshiyuki Watanabe, Mototaka Kai, JGC Corporation, Japan; Ko Sakata, Yuki Ishimoto, Yuji Mizuno, The Institute of Applied Energy, Tokyo, Japan

15th Annual NH3 Fuel Conference, Pittsburgh, PA, October 31, 2018
NH3 Energy+ Topical Conference at the AIChE Annual Meeting

ABSTRACT

This study presents a cost estimation for electricity generated by CO2-free ammonia and coal co-firing. Regulation of CO2 emissions seems to be gaining pace due to the global warming issue so the introduction of CO2-free energy in power generation has become desirable. Ammonia is one of the potential energy carriers for power generation and development of ammonia combustion technology with low NOx emissions has been conducted in Japan. In order to investigate the feasibility of the introduction of CO2-free ammonia in Japan from both the technical and economic viewpoints, we estimated the ammonia supply chain cost from ammonia production integrated with CCS in the UAE and applied this to ammonia distribution for an ammonia-coal co-fired thermal power plant. Continue reading

The Role of “Green” Ammonia in Decarbonising Energy Systems: Practical Demonstration and Economic Considerations

Ian Wilkinson
Siemens, United Kingdom

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Ammonia has the potential to contribute significantly to the decarbonisation of energy systems, by offering a practical, carbon-free hydrogen storage and transportation vector as well as a green fuel in its own right. To better understand the prospects and challenges surrounding the use of ammonia in energy systems, Siemens is leading a collaborative project to build and test an ammonia-based energy storage system at the Rutherford Appleton Laboratory in the UK. Together with its project partners (the UK Science and Technology Facilities Council, the University of Oxford and the University of Cardiff), and supported by Innovate UK, Siemens will demonstrate the full energy cycle of renewable power converted into ammonia and then back into electricity for grid export. Continue reading

Ammonia Renewable Energy Fuel Systems at Continental Scale

William C. Leighty
The Leighty Foundation, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

We must soon “run the world on renewables” but cannot, and should not try to, accomplish this entirely with electricity transmission. New, abundant, low-cost, unconventional natural gas supplies are finite; burning adds CO2 to Earth’s atmosphere.

Humanity’s goal must be nothing less than: Transforming the world’s largest industry from ~80% fossil to ~100% renewable, CO2-emission-free energy sources as quickly as we prudently and profitably can.

We should now carefully consider using pipeline networks, rather than the electricity grid, for solving the three salient technical problems of renewable energy (RE) at lower cost Continue reading

Ammonia Fuel Safety

Trevor Brown
AmmoniaIndustry.com, United States

NH3 Fuel Conference, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

This paper introduces the existing literature on the safety of using ammonia as a fuel, which provides comparative data for a range of traditional and alternative fuels and energy carriers. The studies reviewed conclude that risk levels associated with using ammonia as a fuel are “similar to those of gasoline,” or “similar, if not lower than for the other fuels,” also including hydrogen, methanol, LPG, and CNG. Ammonia as a fuel can meet all “acceptable” risk levels in even the most stringent regulatory jurisdictions. Continue reading

NH3: The Optimal Alternative Fuel

Norm Olson
NH3 Fuel Association, United States

NH3 Fuel Conference 2017, Minneapolis, November 1, 2017
AIChE Annual Meeting, Topical Conference: NH3 Energy+

ABSTRACT

Unlike some technology areas where “all of the above” has significant advantages, there are tremendous advantages associated with choosing a single, optimized, liquid transportation fuel. The cost, efficiency and environmental benefits associated with choosing an optimized liquid transportation fuel are enormous and merit serious consideration.

NH3 most closely meets the criteria for an ideal liquid transportation fuel. Continue reading

CO2-Free NH3

Ken-ichi Aika
Tokyo Institute of Technology, Japan

NH3 Fuel Conference, Los Angeles, September 20, 2016

DOWNLOAD

Download this presentation here [PDF, 600KB]

RELATED NH3 FUEL CONFERENCE PAPERS

2013: Ammonia as an Energy Carrier for Renewable Energy

LINKS

Ken-ichi Aika, Tokyo Institute of Technology
Learn more about the 2016 NH3 Fuel Conference

Japan – a future market for Australian solar ammonia

Keith Lovegrove
ITP Thermal Pty Ltd, Australia

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

Japan and Australia are intimately linked in energy trade. Australia counts energy exports as a major source of foreign exchange income and Japan, which uses nearly 4 times the primary energy as Australia, imports nearly all of it. Approximately 40% of Australia’s coal exports are bought by Japan and were worth $AUD15.4 billion in 2012-13. Over 70% of Australia’s LNG exports went to Japan in the same period and earned over $AUD12billion. Future energy supply is high on the agenda for Japan. Currently 43% of its primary energy is in the form of imported oil mostly from the Middle East. The cost of this together with energy security concerns is a major driver for change. Post the Fukushima Nuclear disaster, the previous 8% contribution from Nuclear dropped to zero and there is much opposition to reinstating it. Japan still has a strong policy agenda to reduce Greenhouse Gas Emissions.

One of the identified routes to a cleaner energy future is the wider use of hydrogen as a fuel in both the transport and power generation sectors. There are a range of technology approaches that allow solar technologies to produce transportable alternative fuels that could form the basis for a future clean energy trade with Japan. If energy is transported as an energy dense liquid in conventional tanker ships, then the effective efficiency of transport over distances of 6000km (Australia to Japan) is greater than 98%. Three options for importing hydrogen fuel into Japan are under serious consideration; cryogenic liquid hydrogen, reversible hydrogenation of toluene, and conversion of hydrogen to ammonia. Ammonia is increasingly considered as the favourable path. It offers higher energy density, leverages an existing global industry and has the potential for direct combustion in combined cycle power plants and heavy transport. Considering Australia’s vast untapped solar resource together with the existing energy trade history plus a history of upstream investments by Japanese companies in Australian Energy developments, suggests the two countries are ideal partners in a future solar fuels trade.

DOWNLOAD

Download this presentation here [PDF, 3.8MB]

RELATED NH3 FUEL CONFERENCE PAPERS

2008: Ammonia Production and Baseload Solar Power [PDF]

LINKS

Keith Lovegrove, ITP
Learn more about the 2016 NH3 Fuel Conference

The Investment Case for Sustainable Ammonia Synthesis Technologies

Trevor Brown
AmmoniaIndustry.com, USA

NH3 Fuel Conference, Los Angeles, September 20, 2016

ABSTRACT

For 100 years, we have made ammonia with the Haber-Bosch process, almost always using a fossil fuel feedstock. Recently, though, government policy, academic innovation, commercial opportunity, and human morality have combined to spur the development of new, “green” ammonia manufacturing processes: sustainable, low-carbon technologies.

These new synthesis methods augur a future in which, instead of the single, over-riding drive toward the economies of scale associated with Haber-Bosch, an array of different feedstocks, uses, and business models will support a multiplicity of competing technologies serving multiple markets. Continue reading